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The siphon 

A Potter and F H Barnes 
Department of Natural  Philosophy 
The University 
Edinburgh 

The siphon  has been known since early times as a 
simple and effective  device for transferring liquid 
from a higher to a lower level and is still widely used, 
Despite this, considerable confusion exists as to how 
the siphon  works and  asurvey of elementary textbooks 
(here ‘elementary’ refers to GCE 0 and A level 
standard) yields a number of conflicting accounts. 
Many are in terms of hydrostatic principles which 
cannot apply and, in addition, atmospheric pressure 
is postulated  as an essential agency in most  accounts, 
including those given by the  standard dictionaries, 
Few books  point out  that  it is the cohesion of the 
liquid rather  than  the pressure of an external atmos- 
phere which is crucial to  the working of a  siphon. 
Some American college texts discuss the siphon and 
give a  correct  theory  although generally in terms of 
non-viscous fluids. It is unusual for more advanced 
texts to discuss the siphon,  for it is only a  particular 
case of the general problem of pipe flow which has 
been the subject of thorough investigation. We have 
written this article because we are concerned that 
misleading interpretations of the siphon are still 
current even though much is known about  the physics 
of pipe flow and  the properties of liquids. 

We  begin with a survey of the ‘hydrostatic’ theories, 
following this with the dynamic theory  for an ‘ideal’ 
nonviscous liquid. We modify our ‘ideal’ theory to 
take  account of the viscous nature of liquids and then 
give some experimental results. Finally we attempt to 
analyse the factors underlying the working of the 
siphon and suggest a possible theory. 

Hydrostatic theories 
A typical account of the siphon given in elementary 
text books might read as follows. 
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Referring to figure 1, p s  equals pa, where p,, is the 
pressure of the surrounding  atmosphere and p B  is the 
pressure at  point B in the  liquid. Since B and E lie on 
the same  horizontal level (strictly, on the same gravi- 
tational equipotential), p e  equals p E .  The pressure pF 
of the liquid at F equals p E  + pgh and therefore also 
equals pa + pgh where p is the density of the liquid. 
Thus p F  is greater than the external pressure, and  the 
liquid flows out of the tube. In  order to prevent a 
vacuum forming in the  tube  more liquid, pushed in  by 
the atmospheric pressure, enters at A. Another com- 
mon account begins by saying that p e  equals po and 
p F  equal pa. Then, by consideration of heights of 
liquid, it  is argued that the pressure at C must be 
greater than  the pressure at D, and this pressure 
difference causes the liquid to flow. This account is 
incorrect. If the liquid is stationary pc must always 
equalp,. If the liquid flows and we apply the principles 
of  fluid dynamics, we still find that the pressures at 
points on the same horizontal level are equal if the 
pipe is of uniform bore and we neglect viscous losses. 

The first account given above is correct when no 
flow occurs but its limitations as  a  theory for a work- 
ing siphon are obvious since it describes a  static condi- 
tion. The siphon is essentially a device involving fluid 
flow and it is desirable that  our theory should allow 
us to  make some  quantitative predictions such as,  for 
example, the dependence of the  rate of flow of liquid 
on  the height h. 

Dynamic theory 
The discussion below considers the flow of fluids in 
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Figure 1 Diagram of a siphon. 



tubes. Provided  there are  no leaks the mass of fluid 
crossing each section of a tube per unit time must be 
the same.  Conservation of mass is expressed by the 
equation of continuity 

p AV = constant (1) 
where A is the  area of a cross section of the  tube  and p 
and z’ are  the values of the density and  the velocity of 
the fluid flowing normal to  the cross section. For  an 
incompressible fluid p is constant and  the equation of 
continuity reduces to 

AV = constant. (2) 

(i) For an ideal fluid 
Because all real fluids exhibit viscosity there is an 
inevitable dissipation of energy in fluid  flow but let us 
for a moment consider an ‘ideal’ non-viscous and in- 
compressible fluid. We assume that its flow through  a 
tube is steady and irrotational (which excludes the 
possibility of a vortical motion) and  that there is no 
possibility of heat exchange between the fluid and its 
surroundings.  Then the energy of the fluid flowing 
along the  tube will be conserved. This is expressed 
mathematically by the Bernoulli equation 

p + Bpv2 + pgh = constant. (3) 
The parameters are again average values for  the 

cross section, p representing the pressure in the fluid 
and h the elevation of the  tube relative to some fixed 
level. 

Suppose that liquid is siphoned  from  a vessel with a 
cross sectional area which is large compared with that 
of the siphon  tube.  Then the downward velocity of 
the surface of the liquid in the vessel  is  effectively 
zero (by equation (2) ) .  If the siphon tube is  of uni- 
form bore, (again by equation (2)) ,  the velocity of 
flow z’ will  be the  same  throughout the tube. We can 
apply  equation (3) anywhere inside the vessel-siphon 
system. Thus 

where the left hand side of the equation  has been 
evaluated at  the surface of the liquid in the vessel and 
the right hand side has been evaluated at B. 

Energy conservation between B and F implies that 

Po = P B  + 8 P C 2  

PB + * PV* = p p  + *PE* - pgh. 
At F the  tube is open to  the external pressure so that 

Pp =Po. 
Combining these three  equations we have 

z’* = 2gh (4) 
that is the fluid emerges from  the siphon with just the 
velocity it would acquire by falling through a height h. 

It is of interest to  note  that  the pressures at points 
inside the  tube  are all less than  the external pressure, 
with the exception of the pressure at  F, which is equal 
to  the external pressure. The pressures in the dynamic 

situation are less than those  in the static  situation by 
an  amount +p@; in particular, for  the static case, 
there is a pressure head of pgh acting while for  the 
dynamic case the effective pressure head is pgh - +pv2. 

(ii) For a real  liquid 
When we consider the flow of a real fluid we im- 
mediately find complications because there are two 
major types of  flow possible: a smooth laminar flow 
and a  turbulent  one.  Osborne Reynolds distinguished 
between these two types of flow in his experiments on 
the flow of water through pipes and he established a 
criterion, the non-dimensional Reynolds Number, in 
terms of which the flow might be described. 

Below a  certain critical Reynolds Number of about 
2000, the flow  in the pipe remained laminar  along  its 
whole length. Above that number  there was a  transi- 
tion to turbulent flow at some point  along  the pipe. 
The Reynolds Number is given  by 

where z’ and dare  respectively a velocity and a length 
representative of the flow, is the coefficient of  vis- 
cosity and p is the density of the fluid. For  the case of 
pipe flow 2: is taken as the volume rate of flow divided 
by the cross sectional area of the pipe, and d is the 
diameter of the pipe. 

The working siphon is an example of flow  in a U 
shapedpipe  and  for a given liquid and pipe there is the 
possibility of either laminar or turbulent flow depend- 
ing on  the velocity. In both cases energy will be lost by 
the liquid because of its viscosity and  the Bernoulli 
equation, which is a  statement of the conservation of 
energy of a non-viscous liquid,  cannot be applied. If 
we  wish to calculate the average velocity of a viscous 
liquid in a  siphon and yet maintain the  form of the 
Bernoulli equation, we may do so by introducing  a loss 
of head h, which corresponds to the energy losses 
suffered by the liquid. The average velocity instead of 
being given  by 

is now given  by 

The loss of head in larninarflow is due solely to skin 
friction whereas in turbulentflow there  are, in addition, 
losses associated with the pipe ‘fittings’. In this case 
the ‘fittings’ are the  entrance and bends. 

For both types of flow, the loss of head  due to skin 
friction is given  by Darcy’s equation 

v? = 2gh 

V2 = 2g (h  - h, ). (6 )  

where f is a dimensionless friction factor and I the 
length of pipe. The friction factor is a  function of the 
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Reynolds  Number and, in the case of turbulent flow, 
also  depends on  the roughness of the inside of the pipe. 

(a) Laminar flow. The average velocity for laminar 
flow in a pipe of circular cross section is given by the 
Poiseuille equation, here expressed in the  form 

d2 
327 

v = - x (pressure gradient along the pipe) 

After multiplying through by V and  somerearrange- 
ment we may write 

Because the losses in  laminar flow are solely due  to 
skin  friction, h, = hJ. Hence, using equations (6) and 
(71, 

v 2  = 2gh - - flv2 
d 

giving 

By comparison of equations (8) and (9) we see that 
64 f = z .  

(b) Turbulent flow. We shall consider only smooth 
pipes in which the friction factor is sufficiently accu- 
rately given  by Blasius’ empirical equation (valid for 
3000 < R < lo6) 

f = 0.3164 R-*. (1 1) 
The  additional loss in head  due to  the pipe fittings, 

which occurs only for turbulent flow, has been found 
to vary approximately as v2/2g. The net loss of head 
caused by fittings is given  by 

hF=(kl+kZ+kn+ ... )- V 2  

2g (1 2) 

where k ,  is the loss coefficient of an individual fitting. 
Empirical values of k ,  can be found in tables. 

For turbulent flow, therefore, the  total loss of head 
is given  by 

h, = h, + h,. (1 3) 
(c) Inlet length. The formulae for head losses due to 

friction given in the two previous sections are valid 
only for fully developed laminar or turbulent flow. 
Close to  the entrance the presence of the pipe walls has 
a negligible effect on  the central  core of the fluid but, 
further down the pipe the walls affect the viscosity more 
and more of the fluid until eventually the final fully 
developed flow is achieved. 

The inlet length is defined as  the length beyond 
which the flow has become fully developed. For 
laminar flow it is, according to  Langhaar, 0.057 Rd 
(see  Massey 1968). For turbulent flow the inlet length 
depends on  the conditions at  the entrance and theory 
3 64 

suggests it is a slowly varying function of Reynolds 
number. However, for this  latter  case no consistent 
experimental results have been found for  the value of 
the  inlet length, but it would appear reasonable to 
take  it as 50d. 

A value for A taking into account the entrance 
length in  laminar flow, has been calculated by Atkinson 
and Goldstein (see Goldstein Vol 1, 1938) and is given 
by 

64 d 
I ‘  f =  2 + 1.41 - 

A description of a different approach  to  the prob- 
lem of corrections to the Poiseuille equation is  given 
by Newman and Searle (1957). 

Experimental results 
In our experiments we used siphon tubes of diameters 
ranging from approximately 0.15 cm up  to 2.0 cm and 
we were able to obtain  both laminar and turbulent 
flow. The basic technique was to siphon water out of 
a vessel of large cross sectional area  compared with 
that of the siphon  tube. The  rate of flow of water 
through  the siphon for a given head h was found by 
collecting water in a calibrated vessel for a known 
period of time. The head h was varied by raising or 
lowering the  siphon tube. 

Narrow  siphon  tubes, of diameter 0.173 cm and 
0.312 cm, were made  from glass tubing bent through 
two right angles to  form U tubes with equal  arms of 
lengths of approximately 50 cm. Water was siphoned 
from a plastic bin of diameter 40 cm and was collected 
in standard measuring cylinders. 

The wider siphons, of approximate diameters 1.4 cm 
and 2.0 cm, were made from straight lengths of copper 
tubing  joined by standard ‘Yorkshire’ right-angle 
fittings. The siphons  had  equal  arms of lengths of 
approximately 90 cm. A large roof storage tank 
(approximate  areal dimensions 2 m by 14 m) acted as a 
reservoir and we measured the amount of water 
collected in a  calibrated plastic bin. 

All distances were measured with a metre rule 
except for  the  tube diameters which were measured 
with a travelling microscope. 

The results for  the friction factor for flow through 
the two  glass tubes are shown in figure 2 together 
with the relevant theoretical curves. It may be seen 
that our experimental values are consistently higher 
than theory would indicate. For R<2000 incon- 
sistencies in the  tube  bore,  for example narrowing at 
the  bends, is a possible explanation  for  this divergence 
and  for R >  2000 it is likely that  our flow  was no 
longer laminar. 

In  the copper tubes Reynolds numbers ranging from 



1 x lo4 to 3 x lo4 were obtained. The expected losses 
arising from  turbulent flow through  the siphon were 
obtained  as follows. 

By substituting  equations (7) and (12) into (13)  we 
obtain 

Therefore, by equation (6) 

giving 

@ = l + f $ + > , .  V2 

In  our case 2 kn = 2.2 (k for each bend being taken as 
0.6, k for  the entry  as 1.0). f was calculated using 
equation (1 1). 

The experimental values of 2gh/02 were lower than 
expected, by 20% for  the  narrower tube  and by 10% 
for  the wider tube. Since the entry lengths occupy a 
considerable proportion of the  total length of the  tube 
and  the  point  in  the  tube  at which the flow becomes 
turbulent is uncertain, these results are perhaps not 
surprising. 

Conditions for a working siphon 
That a liquid cannot sustain  a tension and  that the 
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Figure 2 Comparison of measured values of the 
friction  factor f and two  theoretical estimates: broken 
curve, Poiseuille’s law f = 64IR; and full curve, 
Atkinson and Goldrtein equation (equation (14)) 
f = 641R + 1.41 dl l .  

working of a siphon depends on  an external pressure 
appear to be two popular misconceptions. 

Trevena (1967) has written “It is not generally ap- 
preciated that liquids can,  under appropriate condi- 
tions, sustain very considerable tensions”. This state 
ment  should not surprise us unduly, for we accept that 
the cohesive forces between molecules account for the 
existence of, for example, the liquid phase and  the 
surface properties of liquids. Since the liquid in a 
siphon can withstand tension, the barometric height 
should not place a limit on the  ‘uptake height’ (ie the 
height BC) for which a  siphon will work. Nokes (1948), 
for example, has reported the successful operation of 
a mercury siphon with an uptake height of  80 to 84 cm 
in air at atmospheric pressure and Ashhurst (1966) 
states that such a  siphon has been made to work with 
an uptake of 150 cm. 

Several questions immediately come to mind. Is  there 
a limit on the  uptake height ? Why  is it a useful rule of 
thumb not to attempt to operate  a  siphon with an 
uptake height of the order of or exceeding the baro- 
metric height?  Does  the pressure of the external 
atmosphere play any  part in the working of the 
siphon ? 

The  amount of tension that a liquid flowing in a 
pipe can  sustain,  without  forming cavities that will 
grow and disrupt the flow depends on a number of 
factors. Temperley and Chambers (1946) for example 
found  that  tap water flowing through a constriction 
cavitated at a critical tension of 0.05 atm. However, 
the critical tension increased to 0.22 atm if the  tap 
water had already been passed through  the  apparatus 
once and  further increased to 0.27 atm if the water 
had passed through the apparatus three times. Batche- 
lor (1967)  gives a possible explanation of how cavita- 
tion occurs  in  situations similar to those of the above 
experiment. He assumes that there are tiny air bub- 
bles present in the water which grow continuously 
when the pressure falls sufficiently  below the  saturated 
vapour pressure of water. If water has been boiled or 
subjected to a large positive pressure, which presum- 
ably removes all the air bubbles although leaving the 
water saturated with air, it can withstand considerable 
tensions, certainly above 20 atm. Temperley has cal- 
culated that water should  have a critical tension of 
500 atm  and this value is reduced by  less than 0.5 % if 
the water is assumed saturated with (dissolved) air  at 
a pressure of 1 atm (see Trevena 1967). A wide range 
of experimental values for  the critical tension of water 
have been reported (see Trevena 1967) but Briggs 
(1950) has obtained a value as high as 277 atm  for boil- 
ed water in a capillary tube open  to  the atmosphere. 
It is interesting to  note  that Trevena (1967) points out 
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that these experimental values for the critical tension 
are a measure of the ‘weakest link’ in the liquid con- 
tainer system, so that they depend on  the material and 
nature of the walls of the container. It is clear then that 
liquids can  support very considerable tensile stresses. 
In practice, of course, we may expect that  the liquids 
being siphoned will contain dissolved air, foreign 
matter and tiny air bubbles and in these circumstances 
it  is a useful rule  to assume that  the critical pressure 
is equal to  the vapour pressure of the liquid. 

The effect of an external pressure is to compress the 
liquid column. For a viscous liquid moving through 
the siphon, the pressure at D on  the diagram is 

where c is the observed velocity of flow, h,, represents 
the loss in head effective at D caused by friction losses, 
and h, is the loss in  head due to elevation. The larger 
p. is, the greater h, can become before p, becomes 
less than  the saturated  vapour pressure and  the 
column becomes liable to breakage. If there are  no 
effective nuclei present in the liquid-siphon system, 
we would not expect the external pressure to play any 
appreciable part in the working of the siphon. Again 
Nokes (1948) reported  operating  siphons with water, 
dibutyl phthalate and mercury under ‘vacuum’ condi- 
tions; in fact the siphons functioned under the vapour 
pressures of the liquids in them which, at 20”C, would 
range from 1.75 cm Hg  for water down to  1.2 x 
cm Hg for mercury. Nokes  ensured that his apparatus 
was clean before use, and after filling the  apparatus 
boiled the liquid ‘to remove dissolved gas’. He states 
that  the chief disturbing  factors which tend to break 
the liquid column of a  siphon working under ‘vacuum’ 
conditions are gas dissolved in the liquid, adherent  gas 
on the walls of the tube, mechanical shock and  turbu- 
lent flow of the liquid. 

p = p o - l  2 PV’ - Pg (h, - h,) 

Explanation of the siphon 
By now it should be clear that, despite a wealth of 
tradition,  the basic mechanism of a  siphon does not 
depend  upon  atmospheric pressure. 

Nokes (1948) cites the following explanation, which 
is also given in the  books by Abbott (1963) and Ash- 
hurst (1966). In a  siphon working under vacuum con- 
ditions liquid will  flow through  the siphon if the 
gravitational force acting on  the liquid in the down- 
take  tube (ie the  tube  from D to F) is greater than  the 
gravitational force acting on  the liquid in the  uptake 
tube. The liquid column, dragged through the  tube by 
its own weight, is in a state of tension and it is because 
of the cohesive forces between the molecules of the 
liquid that  the column  remains  unbroken. The effect 
of an external pressure is to compress the liquid 
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column rendering it less liable to breakage. It is a 
helpful analogy to imagine the liquid in the vessel and 
the siphon being replaced by a chain. 

An explanation in terms of fluid dynamics would 
run thus. Imagine a vessel with liquid in it and a 
siphon  tube, filled with liquid, with one end immersed 
in the liquid in the vessel and  the other end at F 
blocked (see figure 1). When the obstruction  at F is 
removed, the pressure at F is momentarily greater than 
the external pressure by an  amount pgh. Liquid flows 
out of the tube with increasing velocity until pF be- 
comes equal to p,,. Suppose the liquid is then flowing 
through  the  tube with velocity z’, and we assume (for 
simplicity of argument) that  the cross sectional area of 
the vessel  is  very large compared  with that of the 
tube, so that, by (2) ,  we may neglect the downward 
velocity of the liquid in the vessel. If the pressure on 
the horizontal level of A of the (assumed static) liquid 
in the vessel isp,, then the pressure at  A just inside the 
entrance to the tube is p s  - 3pv2. The pressure differ- 
ence across  the  entrance of the tube  maintains the flow 
of liquid. 

Obviously this  explanation is greatly simplified, but 
it is in essence correct and can be refined to allow for 
the properties of real liquids and pipes. It is worth 
emphasizing that the  explanation is unaltered whether 
p. is zero or finite. 
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